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Abstract. In  this paper,  we use the Painlev6 approach to analyse a system of partial 
differential equations governing the carrier flow in semiconductor devices and obtain its 
auto-Backlund transformarions. Moreover.  He obtain some analytic solutions directly from 
the Painleve-Backlund equations by introducing two elementary homographic  invariants. 

1. Introduction 

The carrier flow in semiconductor devices is described by a system of nonlinear partial 
differential equations. Let U, t' and w be the density of conduction band electrons, 
the density of valence band holes and the electrostatic potential, respectively. Let R 
denote the net recombination depending on U and U. Then we have 

-7 . ( C V W )  = U - U - N 

U, = 7 . (p. , (Tu - U G W ) )  - R (  U, t') 

U r = C ~ ~ p . , ( C U+L~GM~))--R(u, U )  (1 .3)  

where c is the dielectric constant, N = N U -  N, ,  N D  and N A  being the densities of 
donor and  acceptor ions respectively. pL, m d  p L  are the electron and hole mobilities 
respectively. Generally, p, and p,  depend on N,, N4 and Vw. 

In practical problems, U, t' and M' are defined on a connected, bounded open 
domain. Thus we habe to consider ( 1.1 1-( 1.3) subject to suitable initial and boundary 
conditions. Some authors have studied several simplified cases and proved the existence 
and regularity of the unique solution, while others have solved it numerically (see e.g. 
Mock [ l ]  and  Kuo Pen-yu [ 2 ] ) .  On the other hand, for theoretical reasons, we are 
also interested in analytic solutions. 

As we know, Weiss, Tabor and Carnevale developed a creative method, called the 
WTC method, with successful applications to single partial differential equations [3 ,4] .  
Grauel [5] used this method for some systems of nonlinear ordinary differential 
equations. Clearly, it is not easy to generalise this method to systems of nonlinear 
partial differential equations. 

The aim of this paper is to look for analytic solutions of (1.1)-( 1.3)  via the Painlev6 
analysis. In the following section, we perform the Painlev6 analysis to show that this 
system has no Painlevt property for partial differential equations, and thus it is not an  
integrable system in the sense of Weiss er a1 [3,4]. We still use this method, however, 
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to get some useful information by introducing the ‘log’ term in the expansion. Therefore, 
we get an auto-Backlund transformation naturally. In section 3, some non-trivial 
analytic solutions are obtained directly following the ideas of Conte and Musette [6,7]. 
The final section is devoted to further discussion. 

2. Painleve analysis 

In some practical cases, we can simplify the model (1.1)-(1.3). It means that p, and 
pcL, are constants and R I ,  U )  = 0. For simplicity of analysis, we only consider this case 
and put p, = a and pL b. Then (1.1)-( 1.3) become 

C A W = U  - U -  N (2.1) 

U ,  = ~ ( A u -  VU - V W ) - C Z U ( U  - U -  N ) / c  (2.2) 

U ,  = ~ ( A u  + V U  * V W )  + bu( U - U - N ) / c .  (2.3) 

The main idea of the WTC method is to demonstrate that the solutions comprising 
the ‘ansatze’ 

are single valued about the singularity manifold M = 0; that is, p l ,  p 2  and p 3  are positive 
integers, M is analytic and non-characteristic ( M , M ,  # 0) and all recursion relations 
for wj, uk and U [  are self-consistent. By substituting (2.4)-(2.6) into (2.1)-(2.3) and 
analysing the order of leading parts, we obtain 

PI = o  pz = p ,  = 2. 
Since p1 = 0 is not allowed, the system (2.1 )-(2.3) is not integrable in the sense of the 
PainlevC property for partial differential equations. Accordingly, we introduce a ‘log’ 
term in (2.4) and adopt the following expansions: 

w = T log M + w,, 
u = u o / M 2 + u l / M + u 2  

t . = t ‘ o / M 2 + ~ , / M + ~ 2 .  (2.9) 
We require that wo, u2 and u2 satisfy the original system and so (2.7)-(2.9) are just 
auto-Backlund transformations provided the above form it not contradictory. 

We substitute (2.7)-(2.9) into (2.1)-(2.3) and obtain the following equations: 

u0 - u0 = - C T ~ V  MI’ 

u , - u , = c ( ~ V T * V M + T A M )  

~ 2 -  0 2  = C A T  log M + C A  WO+ N 

[(2 T + 6)1VM12 - ( UO - u O ) /  C ]  U O  = 0 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 
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- 2 u o M l / a  =(-4Vu, .VM-2uoAM+2u,/VMIZ) 

+ (2uOG wo * C M + Tul /G MI2 - TV M . V uO) 

- 2 U O U  ,/ c + ( U I 00 + U O U ~  )/ c + ( 2  uOC T .  V M )  log M (2.14) 

u , , , / a  = A u ,  - ( T V M .  V u 2 + G u ,  . C WO) - 2 u l u 2 / c  

+ ( u , u ~ + u , u Z ) / C + N U ~ / C - ( G T .  VU,) log M (2.16) 

u2, [  = a ( A u 2 - V u 2  Vw,) - au2( u2 - v 2 -  N ) / c  - ( a V T .  Vu2)  log M 

[(  -2T+ 6 ) lVMlZ+ ( U, - u O ) / C ] U O = O  

(2.17) 

(2.18) 

- 2 v 0 M , / b  = (-4VUo * V M - ~ U ~ A M + ~ U , / V M / ' )  

- (2voVw0.  V M + T v I I V M I 2 -  T C M *  V V ~ ) - ~ U ~ U ~ / C  

+ ( u ~ u , + ~ , u ~ ) / c - ~ ( ~ , V T . V M )  log M (2.19) 

- ( v ~ + 2 v , v 2 ) / c + ( u , v ,  + uov,+ u , v , ) / c  

- N u ~ / c + [ ( V U ~ - U ~ V M ) . G T ] ~ O ~ M  (2.20) 

v Z . [ =  b ( A v 2 + V U 2 . V w o ) + b v 2 ( u z - ~ ~ -  N ) / c + ( b V T . V v z )  log M. (2.22) 

Because w,, u2 and u2 satisfy (2.1)-(2.3),  we have from (2.12), (2.17) and (2.22) that 

T = V T .  V u z = C T .  V v ? = O .  (2.23) 

Clearly, the above statements tell us that there is a special solution T = T (  t ) ,  where 
T ( r )  is an  arbitrary function of t .  We might as well express the solution in the more 
general form T ( x ,  t ,  u 2 ,  v z ) .  Furthermore, (2.13) and (2.18) lead to the following four 
systems: 

system I : U, # 0, U, # 0 and  

( 2  T +  6)lV MI' - ( U O  - U,)/ c = 0 

( - 2  T + 6)lV M 1' + ( U,] - U")/ c = 0 

system 11: uo=O, uof 0 and  

( -2T  +6)IV M I 2 -  U,/C = 0 
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system 111: uo f 0, uo = 0 and 

(2 T +  6)lV MI2 - U ~ / C  = 0 

system IV: uo=O and uo=O. 
We first analyse system I and find out that 

/VMI'=O (2.24) 

uo= uo. (2.25) 

Thus (2.11) becomes 

U ,  = VI (2.26) 

and (2.10) is satisfied automatically. Therefore (2.14) tells us that M ,  = 0 and so M is 
constant, say M = M O .  It is easy to verify that (2.19) holds automatically. Moreover, 
we have from (2.15) that 

~ , , / a = A u o - V u o ~ V w , - u o A w o - ( C u o ~ V T )  log M O .  

Similarly, (2.20) becomes 

~ o , , / b  = AV,+ V u 0  . V W O +  u O A W O +  ( V u 0  * V T )  log MO. 

Since uo = u o ,  the above two equations lead to 

u0,, = 2abAuo/(a + b) 

A uo = ( a + b ) ( V ( uoV wo) + ( V uo * V T )  log M O ) /  ( a - b ) . 
(2.27) 

(2.28) 

Similarly to (2.15) and (2.20), equations (2.16) and (2.21) also give us the following 
equations: 

U,,, = 2abAu,/(a + b)  (2.29) 

A u , = ( a + b ) ( V .  ( u l G w o ) + ( V u ,  . V T ) l o g  M o ) / ( a - b ) .  (2.30) 

Obviously, u1 and u1 satisfy the same equations as do  uo and uo. Since M = MO and 
(2.7)-(2.9), we obtain the auto-Backlund transformation 

w = H + w ,  (2.3 1) 

u = F + u 2  (2.32) 

u = F + u Z  (2.33) 

where 

H = T log M O ,  

F, = 2abAF/ (a  + b)  (2.34) 

and 

A F  = ( a  + b)(V * ( F V  w0) + V F .  V H ) .  (2.35) 

The simplest solution of (2.1)-(2.3) is ( c ( t ) ,  N/2 ,  -N/2 ) ,  where c ( r )  is an arbitrary 
function of t. On the other hand, if we take a simple solution of (2.23) to be an  
arbitrary function of t ,  say T (  t ) ,  then (2.31 142.33) lead to another solution ( c (  r )  + 
T (  t )  log M O ,  Fo+ N/2 ,  F,, - N / 2 ) ,  F, satisfying the Laplace equation A F  = 0 and F, = 0 
by means of (2.34)-(2.35). 



Painleve' analysis of carrier flow equations 5191 

Furthermore, by use of (2.23) and (2.31), we can integrate (2.35) into 

0 F - ( a  + b )  F V  w/ (a  - b )  = f( t ) (2.36) 

where f( t )  is an  arbitrary vector function of t .  
Now turning to system 11, we get 

00 = C(  -2 T + 6 ) / V  MI2. 

On the other hand, we have from (2.10) that 

uo = cTlG MI' 

and  so ( T  = 2), 

vo = 2clO MI'. (2.37) 

Thus (2.14) gives us U ,  = O  and (2.11) becomes 

V, = -2cAM. (2.38) 

Therefore, (2.15) leads to U? = 0 and (2.16) holds automatically. Therefore, we obtain 

w = 2 log M + w, (2.39) 

u = o  (2.40) 

U = -2~A( l0g  M )  + U? (2.41) 

where ( wo, 0, U,) satisfy the original system of partial differential equations and  M 
satisfies the following three equations: 

MI/ b - V  Ma C W O +  (AM -OIVMI* * VM/IVMI') = 0 (2.42) 

[2VM. O M ,  + (AM)Ml]/ b - [OJVM1'+ (AM)VM] * V W O  

+ ( ~ U , / C +  N / c - A ) J V M I ' +  ( A M ) ' = O  (2.43) 

A M I /  b - V (  A M )  * 0 W O  + ( V  M . V + 2A M )  U? + ( N /  c - A)A M = 0. (2.44) 

I n  the case of dimension 1 x 1, we verify the compatability of these equations. So 
(2.39)-(2.41) is another auto-Backlund transformation for the special case U = 0. 

System I11 is completely similar to system 11. We obtain T =  -2 and the auto- 
Backlund transformation 

~ = - 2 1 0 g M + w ,  

U = -2cA( log M )  + ~2 

(2.45) 

(2.46) 

v = O  (2.47) 

where ( wo, u 2 ,  0) satisfy the original partial differential equations (2.1)-(2.3) and  M 
satisfies 

M , / a + V M .  Cwo-(AM-C(ICMI?) * VM/JVM) ' )=O (2.48) 

(2VM. VM, + M,AM)/a  + (V'JVMI'+(AM)CM).  VW,+ (AM)' 

+ ( ~ u J c  - N /  c - A)lV M 1 '  = 0 (2.49) 

(2.50) AM,/a +V(AM) . Ow,+ ( V M .  V +2AM)u2 /c  - ( N / c + A ) ( A M )  = 0. 



5192 Zhi-xiong Chen and Ben-yu Guo 

Finally, we consider system IV.  We know from those equations that there are two 
possibilities. The first one is trivial, that is w = wo, U = u2 and v = u 2 .  The other is 
similar to that in the case of system I ,  that is 

w = H ,  + WO 

U = F ,  4 ~2 

v = Fl + ~2 

(2.51) 

(2.52) 

(2.53) 

where HI and  F,  satisfy the same equations (2.34) and  (2.35) or (2.36) as H and F 
do. We omit the tedious process of analysis. 

3. Analytic solutions 

As we know, the homographic transformation is 

LiM+6 
F M + d  

H :  M+- (lid - b F  # 0). (3.1) 

Under this transformation we introduce two elementary invariants, the Schwarzian 
derivative and  the dimension of velocity, which are 

and 

M c =-- 
M Y  

(3.3) 

The compatibility of (3.2) and  (3.3) leads to 

s, + CY,, + 2 c , s  + cs, = 0. (3.4) 

The basic idea of constructing analytic solutions is to turn the Painleve-Backlund 
equations, such as (2.10)-(2.22), into the polynomials of S, C and their derivatives or 
sometimes including another important statement D = - M x , /  M ,  and its derivatives 
(the so-called PainlevC-Backlund transformation), and  to make the ‘minus square’ 
transformation 

M ,  = V-‘. (3.5) 

Therefore, we can obtain from (3.2) and (3.3) that 

v,, + s v / 2  = 0 (3.6) 

v, + cv, = 0. (3.7) 

This is a linear system and  its solutions can be obtained systematically. At this point, 
we should note that the PainlevC-Backlund transformation appears to be correct in 
many evolution equations according to  a series of papers by Weiss er a1 [3,4,6,7].  
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Hereafter we consider a special case with the dimension 1 x 1 and  use the above 

(3.8) 

method to obtain analytic solutions. Then (2.42)-(2.44) become 

MI/ b - M,, - M,wO , = 0 

(2M,M,,+ M,,M,)/~-~M,,M,w,,+~M~u?/c+ NMf/c-M;,-2M,M,.,=O (3.9) 

M,, l /b-M,,y~~o,+iu~, ,M,+2v~M,\+ NM,,)/c-M,,,,=O. (3.10) 

The PainlevC-Backlund transformation shows that (3.8) and  (3.9) turn into 

~ , , = - C / b + 2 ( 1 0 g  V), (3.11) 

U : =  cC,/ b + CS - N / 2 +  cD'/2 (3.12) 

and (3.10) becomes an identity. We next turn to the original equations and  find out that 

-cVU,,,- U?- N = O  (3.13) 

~2 , - bu,,,, - bw, r ~ 2 , ,  + bvz( U' + N)/c  = 0. (3.14) 

By substituting (3.11) and (3.12) into (3.13), we know that N should be zero, if it is 
homographic invariant. Therefore (3.14) becomes 

(3.15) 

Particularly, if S and C satisfy the equations 

cy, + cc,, + c' = 0 

s, - cy,, + cs, + 2 s c ,  = 0 

(3.16) 

(3.17) 

s,, = o  (3.18) 

then (3.15) holds naturally. The combination (3.16)-(3.18) with (3.4) gives 

s,, = o  (31.9) 

C Y , ,  = 0 
c , + c s , + 2 s c ,  = o  
( C ,  + CC,) ,  = 0. 

(3.20) 

(3.21) 

(3.22) 

Clearly, the simplest solution of (3.19)-(3.22) is that S and C are constants. Let 
S =  -ki/2 and C = co. Then (3.6) and (3.7) become 

V,,  - k;?, V/4 = 0 

VI + C" v, = 0. 

(3.23) 

(3.24) 

The general solution of this linear system is 

V = A e h o E  ' + B e - k o E 2  6 = x - cot (3.25) 

where A and B are arbitrary constants. Then we have from (3.5) that 

(3.26) 

where C and D are arbitrary constants provided 

C B - A D = - l / k o .  
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So, from (3.11) and (3.12), 

(3.28) 

where g ( t )  is arbitrary function of r. 

ution is 
It follows from the auto-Backlund transformation (2.39)-(2.41) that another sol- 

(3.30) 

which is just the same as (3.27) and (3.28). 
If we choose solutions of system (3.19)-(3.22) other than constants, we can obtain 

other more complicated analytic solutions. But it is certainly a difficult job. 
We can apply this method to system 111. The process and the results are similar 

to those for system I1 so we omit them. As to system I and system IV, this method is 
not appropriate since the singularity manifold function M is a constant. 

4. Discussion 

In this paper, we only discuss the simplified model with constant coefficients p,,, p" 
and R ( u ,  U )  = 0. There are still more jobs for us if pu and p, are not constants or 
R (  U ,  U )  # 0. On the other hand, how to extend Painlevi-Backlund transformations to 
high-dimensional problems and to construct analytic solutions are more interesting 
and practical. We will provide further results in a forthcoming publication. 
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